Potent, Reversible, and Specific Chemical Inhibitors of Eukaryotic Ribosome Biogenesis
نویسندگان
چکیده
All cellular proteins are synthesized by ribosomes, whose biogenesis in eukaryotes is a complex multi-step process completed within minutes. Several chemical inhibitors of ribosome function are available and used as tools or drugs. By contrast, we lack potent validated chemical probes to analyze the dynamics of eukaryotic ribosome assembly. Here, we combine chemical and genetic approaches to discover ribozinoindoles (or Rbins), potent and reversible triazinoindole-based inhibitors of eukaryotic ribosome biogenesis. Analyses of Rbin sensitivity and resistance conferring mutations in fission yeast, along with biochemical assays with recombinant proteins, provide evidence that Rbins' physiological target is Midasin, an essential ∼540-kDa AAA+ (ATPases associated with diverse cellular activities) protein. Using Rbins to acutely inhibit or activate Midasin function, in parallel experiments with inhibitor-sensitive or inhibitor-resistant cells, we uncover Midasin's role in assembling Nsa1 particles, nucleolar precursors of the 60S subunit. Together, our findings demonstrate that Rbins are powerful probes for eukaryotic ribosome assembly.
منابع مشابه
Cyclin-dependent kinases govern formation and maintenance of the nucleolus
In higher eukaryotic cells, the nucleolus is a nuclear compartment assembled at the beginning of interphase, maintained during interphase, and disorganized during mitosis. Even if its structural organization appears to be undissociable from its function in ribosome biogenesis, the mechanisms that govern the formation and maintenance of the nucleolus are not elucidated. To determine if cell cycl...
متن کاملEukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation.
Eukaryotic ribosome biogenesis and translation are linked processes that limit the rate of cell growth. Although ribosome biogenesis and translation are mainly controlled by distinct factors, eukaryotic initiation factor 6 (eIF6) has been found to regulate both processes. eIF6 is a necessary protein with a unique anti-association activity, which prevents the interaction of 40S ribosomal subunit...
متن کاملAnalysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis
Ribosomal biogenesis has been extensively investigated, especially to identify the elusive nucleases and cofactors involved in the complex rRNA processing events in eukaryotes. Large-scale screens in yeast identified two biochemically uncharacterized proteins, TSR3 and TSR4, as being key players required for rRNA maturation. Using multiple computational approaches we identify the conserved doma...
متن کاملCoordinated Ribosomal L4 Protein Assembly into the Pre-Ribosome Is Regulated by Its Eukaryote-Specific Extension.
Eukaryotic ribosome biogenesis requires nuclear import and hierarchical incorporation of ∼80 ribosomal proteins (RPs) into the ribosomal RNA core. In contrast to prokaryotes, many eukaryotic RPs possess long extensions that interdigitate in the mature ribosome. RpL4 is a prime example, with an ∼80-residue-long surface extension of unknown function. Here, we identify assembly chaperone Acl4 that...
متن کاملEukaryotic ribosome biogenesis at a glance.
Ribosomes play a pivotal role in the molecular life of every cell. Moreover, synthesis of ribosomes is one of the most energetically demanding of all cellular processes. In eukaryotic cells, ribosome biogenesis requires the coordinated activity of all three RNA polymerases and the orchestrated work of many (>200) transiently associated ribosome assembly factors. The biogenesis of ribosomes is a...
متن کامل